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1 Introduction

The Geometry & Graphics Group (G3) at the Uni-

versity of Genova has been active in the fields of ge-
ometric modeling, computer graphics, shape analysis,

spatial data structures since 1990. The research of the

group focuses on techniques for representing, manip-

ulating, visualizing and reasoning on spatial objects.
Recently, the emphasis has been on structural and ge-

ometric modeling of 3D shapes, terrains and volume

data. The reference applications are in scientific vi-
sualization, data analysis, geographic data processing,

computer aided design and animation. The research on

complex shape modeling focuses on developing efficient
representations for geometric shapes. A special empha-

sis is dedicated on developing topological data struc-

tures and spatial indexes to efficiently encode geometry

meshes, like cell and simplicial complexes, quad and
hexahedral meshes of arbitrary complexity and in ar-

bitrary dimensions, giving rise to the development of

software tools made available in the public domain (see
Section 2). The research in geometric modeling concen-

trates on quad-based representations (see Section 3) for

applications to Computer Aided Design and character
animation. The research on topological shape analysis

is based on applying topological tools to the description

and to the understanding of shapes, and specifically on

morphological representation of shapes endowed with
scalar fields for scientific data visualization and analy-

sis and on computation of topologically invariants pro-

viding global quantitative and qualitative information
about a shape (see Section 4). Moreover, our research

studies techniques to describe shapes through a scale-
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space approach and to the application of such tech-

niques in terrain analysis and human face recognition

(see Section 5).

2 Data Structures for Discretized Shapes in

Arbitrary Dimensions

In the applications, we always deal with shapes in two,

three or higher dimensions discretized as complexes of
polyhedral cells or made of simplices. Triangle and quad

meshes are used for describing the boundary of 3D

shapes, tetrahedral and hexahedral meshes for discretiz-

ing their volume. Simplicial complexes, the higher di-
mensional and non-manifold analogue of triangle and

tetrahedral meshes, are used to encode the relation be-

tween subsets of points and, thus, are the basic rep-
resentation of shapes for geometry understanding in

higher dimensions.

In our research we focused on two approaches, one
based on the development of several data structures for

simplicial complexes in 2D, 3D and arbitrary dimen-

sions, which has led to the design and the implementa-

tion of the Mangrove TDS library which allows the effi-
cient management of several topological data structures

for cell and simplicial complexes arbitrary dimensions

and to the design and the implementation of a frame-
work, based on spatial indexes, which can efficiently

compute topological relations among the cells or sim-

plices of the complex without explicitly encoding them.

2.1 Connectivity-based Data Structures: the Mangrove

Library

Our research has focused on the development of data

structures for simplicial complexes in arbitrary , which

differ in the simplices and in the topological relations
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they encode. We have developed data structures encod-

ing all the simplexes in a complex plus they incidence
relations [13,14] as well as data structures encoding

only the top simplexes plus their adjacency relations

[4,15,16] These latter are more compact, but they do
not allow attaching attributes to simplices not explic-

itly represented. Based on this work, we have designed

and developed a framework, the Mangrove Topological
Data Structure (Mangrove TDS) Library which is a

C++ tool for the fast prototyping of topological data

structures representing cell and simplicial complexes of

any dimension, not necessarily embedded in the Eu-
clidean space. It contains the implementation of seven

data structures for cell and simplicial complexes to-

gether with operators for navigating and querying the
complex based on them. Editing operators, like simplex

collapse, are available and we have implemented also a

new set of Euler operators on cell complexes [9], which
preserve the simplicial homology, like Betti numbers

and homology generators. The Mangrove TDS library

(http : //mangrovetds.sourceforge.net) is the basis

for our research on topological shape analysis based on
homology, as discussed in Section 4.2.

2.2 A Spatio-Topological Approach to Shape

Representation

We have designed and implemented a framework based

on topological spatial indexes that leads to a new data

structure, the PR-star tree [30], in which local topo-
logical connectivity of a simplicial or cell complex is

obtained through spatial locality. In contrast to topo-

logical data structures, which have focused on adjacen-
cies or incidences, we use a spatial data structure on the

complex embedding space to locally reconstruct the op-

timal application-dependent topological representation
at runtime using the sorted geometry available from the

spatial index.

The innovative feature of our approach is in comput-

ing topology through space: local spatial sorting allows
the efficient reconstruction of the local mesh connectiv-

ity. Although this increases the cost of a single opera-

tion due to the construction of the local data structure,
this cost is amortized over multiple accesses to elements

within the same region. Moreover, by recovering the

memory associated with each local data structure after
the processing of that part of the mesh has completed,

we achieve significant memory savings with respect to

global topological data structures. As an application of

PR-star, we have designed and implemented a frame-
work [11,31] which can efficiently compute and extract

morphological features in 2D and 3D scalar fields, based

on Forman theory (see Section 4).

3 Geometry processing

Discrete representations of solid objects, in particular
surfaces and volumes, are ubiquitous in the applica-

tions. Simplicial representations (e.g., triangular and

tetrahedral meshes) have excellent mathematical prop-
erties and they are easily obtained from automatic meth-

ods for reconstruction and meshing, but most often they

are irregular and unstructured. Conversely, in many ap-

plications (e.g., CAD, FEM, animation) models based
on quadrangular and hexahedral cells are preferred, and

often indispensable. Such models must be as regular as

possible and endow in their connectivity the underly-
ing structure of the objects represented. Obtaining such

models in an automatic, or even semi-automatic way,

with the quality necessary to the production pipeline,
is still an open problem, in spite of at least a decade

of work by several groups of researchers [2]. Our group

has contributed in several ways to advance the state-

of-the-art in this direction during the last five years.

In [28] we first proposed a method to convert a tri-
angle mesh into a simplified quad mesh with faces that

are as close as possible to squares of uniform size; we

also extended this method to adaptive quad meshing in

[3]. The same approach was extended in [25] to support
modeling with subdivision surfaces of existing shapes

by a reverse engineering approach. In spite of achieving

results of unprecedented quality, these works failed to
address two important criteria: the alignment of quad

elements to shape features, such as curvature; and the

construction of a semi-regular and coarse mesh.

In [29] we addressed both criteria, developing one of

the first methods that is able to cover a given surface
with a coarse layout of quadrangular domains, roughly

aligned to the principal directions of curvature. With

this work, we started to investigate the intimate math-
ematical relations between directional fields defined on

a given surface and quadrangular meshes laid over it.

Broadly speaking, N-symmetric fields are generaliza-

tions of vector fields on Riemannian manifolds, which
are identical upon rotations of 2π/N about the surface

normal. For instance, principal directions of curvature

on a smooth surface define two mutually orthogonal 2-
fields (a.k.a. line fields), while quadrangulations are di-

rectly connected with 4-fields (a.k.a. cross fileds), which

are defined at each point by a cross of four vectors of
the same size. A quad mesh can be viewed as a dis-

crete version of a cross field, and its quality is deter-

mined by the differential topology of such a field, i.e.,

by the distribution of its singularities and of the sepa-
ratrices connecting them. In [29] we studied how sep-

aratrices can be disentangled to obtain a coarse quad

layout. Later on, we developed an approach based on
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cross fields to obtain quad meshes that are aware of the

symmetries of objects, with applications to objects with
intrinsic bilateral symmetries like humans and animals

[24]. In [19], we developed another approach based on

cross fields to obtain quad meshes that adapt to given
animation sequences, obtained with body scanners able

to capture living creatures in motion. Lately, in [26] we

have generalized cross fields to frame fields, by incorpo-
rating anisotropy and skewness, thus making this mod-

eling framework much more flexible. We have applied

this framework to the design of quad meshes over given

surfaces, also supporting user interaction to achieve re-
sults with a quality comparable to meshes obtained by

expert users with long and tedious manual editing. Our

latest efforts are towards the integration of fast auto-
matic tools together with user interaction, so that an

artist can maintain full control on design while delegat-

ing to the system most tedious operations. In [18], we
propose a method for computing a coarse quad layout

for articulated objects, which follows the intrinsic ob-

ject structure described by its curve skeleton. This quad

layout contains few irregular vertices of low degree: it
can be refined immediately into a semi-regular quad

mesh; it provides a structured domain for UV-mapping

and parametrization; it can be taken as a control grid
for subsequent spline modeling; and hexahedral mesh

filling the object volume can be easily generated, too.

Our method is fast, one-click and it does not require
any parameter setting. It can be easily integrated with

interactive techniques, both during the construction of

the quad layout, and later on in order to proceed to

model refinement. In [20], we propose a method for as-
sisting users during editing sessions to manually design

a coarse quad layout over a given surface. By analyz-

ing existing quad meshes designed by artists, our al-
gorithm learns the most frequently used quadrangula-

tion patterns, which are compressed and stored in a

database. Real-time queries extract patterns that sat-
isfy user-specified constraints, enabling reuse of them

during an interactive retopology session.

4 Computational Topology for Shape Analysis

and Visualization

Spatially-related digital data are being produced at a

constantly increasing pace and their availability is chang-
ing the approach to science and its applications. The

complexity of the data derives not only from the size of

currently available data sets, but also comes from the

need to filter out relevant information from huge quan-
tities of unimportant details. This leads to the need for

computational tools that can efficiently process large

sets of data and generate synthetic descriptors, which

should adapt to different applications, such as classi-

fication, recognition, visualization, reconstruction, etc.
Topology deals with qualitative geometric information,

and this provides either an alternative, or at least a

complementary, way to describe shapes. Advantages of
topological data analysis are the robustness of topolog-

ical invariants, the fact that to topology studies spaces

in a coordinate-free manner and the compactness of
topology-shape descriptions. The main issues in exten-

sively using topological tools in the applications is their

high computational and storage costs, and lack of scal-

ability with the increase of dimension. In our research
we have developed effective topological descriptions of

discrete shapes endowed with a scalar field by using

tools rooted in Morse theory [22], and we apply homo-
logical information to the analysis and understanding

of shapes in medium and high dimensions.

4.1 Computation and Hierarchical Representation of

Morse Complexes

Through Morse theory [22], the topology of a manifold

shape M can be studied in relation with the critical
points of a scalar (real-valued) function defined on M .

Morse theory offers a natural and intuitive way of ana-

lyzing the structure of a scalar field as well as of com-
pactly representing the scalar field through a decompo-

sition of its domain into meaningful regions associated

with the critical points of the field. In the application

domain Forman theory [17] provides a discrete setting
in which the main results from smooth Morse theory

are extended to cell complexes.

We are interested in two issues related to morpho-
logical representation of scalar fields. The first one is

concerned with structural problems in Morse and Morse-

Smale complexes, like over-segmentation in the pres-
ence of noise, the second concerns efficiency issues aris-

ing from the very large size of the input data sets.

These problems can be faced and solved by defining

simplification operators on such complexes and on their
morphological representations. In Morse theory an op-

erator, called cancellation, has been defined which re-

moves two critical points by locally modifying the in-
tegral lines originating and converging in those two

points [21]. Cancellation, however, may increase the

number of mutual incidences among cells of a Morse-
Smale complex when applied on a complex in dimension

higher than two. For this reason we have defined in [7],

two dimension-independent simplification operators for

Morse complexes, alongside with the inverse refinement
operators defined as the undo of the simplification op-

erators. These new operators, called removali,i+1 and

removali,i−1, constantly reduce the number of cells in
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the Morse and Morse-Smale complexes. We have intro-

duced also the updates imposed by the two simplifi-
cation operators on the combinatorial structure of the

Morse-Smale complex represented through a combina-

torial structure the Morse Incidence Graph (MIG) and
we have compared their behavior with the cancellation

operator defined by Morse theory [8,10].

The removal operators and their inverse, refinement

operators have been used in [5] for the definition of a

multi-resolution model consisting of a hierarchy of com-
binatorial representations of descending and ascending

Morse complexes in the form of an incidence graph

(MIG). Such multi-resolution model, calledMulti-reso-
lution Morse Incidence Graph (MMIG), is built start-

ing from the ascending and descending Morse complexes,

computed on the input scalar field, performing a se-
quence of removal operators. The model encodes the

whole simplification history as well as a dependency re-

lation among all the simplifications performed. From an

MMIG it is thus possible to dynamically extract rep-
resentations of the topology of an n-dimensional scalar

field in terms of the Morse complexes, at uniform and

variable resolutions, by applying a sequence of refine-
ment modifications.

4.2 Homology computation on high-dimensional data

Homology is one of the most important tools to ob-

tain topological invariants. Homology provides global

quantitative and qualitative information about a shape,
such as the number of its connected components, and

the number of holes and tunnels. Also, topological fea-

tures are especially important in high dimensional data

analysis, where pure geometric tools are usually not suf-
ficient. The existing literature about homology compu-

tation focus on the computation of simplicial homol-

ogy with coefficients in Z2. This topological invariant
is simpler to be computed than the classical one but

it fails in providing the torsion part of the homologi-

cal information, present, for instance, in a Klein bottle.
The classical way to compute homology with respect to

any Abelian group is the Smith Normal Form reduction

(SNF) [23]. This algorithm is based on the reduction of

the boundary maps described as matrices through an
approach similar to Gauss reduction. The time com-

plexity of the SNF algorithm is super-cubical in the

number of the simplices of the complex, and thus this
approach is not feasible for any practical application.

Our research group has developed two different meth-
ods to improve efficiency and effectiveness of homol-

ogy computation: a decomposition-based method and

a hierarchical one. The decomposition strategy is based

on a divide-and-conquer approach and allow us to ob-

tain the homology with coefficients in Z of a complex
by combining the homological information of its sub-

complexes. The proposed method is called constructive

Mayer-Vietoris (MV) algorithm [1] and is based on the
manifold-connected decomposition introduced in [12]).

Our results show that the MV algorithm requires at

least 55% less space than the SNF algorithm also pro-
viding a considerable speed up (1.6 times faster than

the SNF algoritm).

An interesting tool both to encode a cell complex

and to compute its homology groups is the Hierarchical
Cell Complex (HCC) [6]. An HCC implicitly encodes a

virtually continuous set of complexes obtained from the

original complex through the application of homology-
preserving operators, which are part of a minimally

complete set of operators for manipulating complexes

in arbitrary dimensions [9]. We have proposed an algo-
rithm which computes homology and homology genera-

tors on the coarsest representation of the original com-

plex propagating them to complexes at any intermedi-

ate resolution by traversing the HCC. The computation
of the homology generators on the coarsest complex of

the model and the refinement of the generators at full

resolution take much less time than applying the SNF
algorithm directly on the original complex. Moreover,

we obtain an additional reduction of computing time

(between 15% and 30%) by refining the complex only
in the proximity of the generators. We are currently

extending this approach to o simplicial complexes.

5 Multi-scale Shape Analysis

The deep structure of scale-space of a signal refers to

tracking across scales the zero-crossings of differential

invariants. Classical methods for feature tracking are
prone to noise and tracking errors and they provide just

a coarse representation of the deep structure. In [27], we

have proposed a new approach that allows us to con-

struct a virtually continuous scale-space for scalar func-
tions, supporting reliable tracking and a fine represen-

tation of the deep structure of their critical points. Our

approach is based on a piecewise-linear approximation
of the scale-space, in both space and scale dimensions.

Tracking of critical points is continuous and exact in the

context of such an approximation. Preliminary results
were presented with applications to terrain data and

range images. The main benefit of this approach is that

it allows to rank the importance of critical points with

respect to their persistence in the scale-space and also
to measure their importance and to select the best scale

at which they correspond to representative features. We

are currently working on applications of this method to
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the automated placement of spot heights on relief maps,

a problem in cartography that so far has been addressed
just manually; and to the automatic detection of fidu-

cial points from range maps of human faces, a challeng-

ing problem that is relevant to face recognition. We are
also working on an extension of the method to work

on full 3D data, such as mesh representations of solid

objects, which may find several other applications.
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