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I. INTRODUCTION

It is well known that visual perception and topology are
closely related to each other. In his book “The child’s concep-
tion of space” Jean Piaget and Bärbel Inhelder wrote “the child
starts by building up and using certain primitive relationships
. . . [which] correspond to those termed ‘topological’ by geo-
metricians.” Even if further research in cognitive science has
moderated this position, the importance of topology in visual
perception is no longer questionable.

The topological approach can be seen both as a method
to reduce the usually big amount of information that is
associated with visual data, and as a particularly convenient
and meaningful pass key to human perception [1], [2].

Recent progress in applied topology allows for its use
beyond low level image processing, extending the application
of topological techniques to image interpretation and analysis.
However, this often requires advanced and not trivial theoret-
ical frameworks that are still not well known in the computer
vision community.

The goal of the Vision Mathematics Group is to develop
new topological ideas useful for shape analysis.

The research problems presently tackled by members of
the Vision Mathematics Group cover several subjects that
are relevant to shape analysis: topological analysis of shape
similarity, the use of persistent homology and Reeb graphs
to reveal the global structure of similarities between the data,
the application of persistent homology to study stability and
topological correctness in images, a methodology for classify-
ing melanomas using multidimensional persistent homology,
a new framework to estimate the matching distance between
persistent diagrams of 3D-models.

II. TOPOLOGICAL ANALYSIS OF SHAPE SIMILARITY

In shape comparison, a widely used scheme is to measure
the dissimilarity between signatures associated with each shape
rather than match shapes directly.

Persistence diagrams and Reeb graphs are signatures de-
scribing shapes from topological and geometrical perspectives.
In this framework, shapes are modeled as spaces X endowed
with real functions f . The role of f is to explore geometrical
properties of the space X . The Reeb graph of f is obtained
by shrinking each connected component of a level set of f to
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a single point. The persistence diagram is obtained by pairing
births and death of topological feature along a filtration of X
by sublevel sets of f .
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Fig. 1. Two curves which are not distinguishable by persistence modules,
but with nonvanishing natural pseudodistance.

Metrics measuring the dissimilarity of Reeb graphs and
persistence spaces are thus a proxy to direct shape comparison.
One such metric is the natural pseudodistance between two
size pairs (X , f ), (Y,g), with X , Y homeomorphic; given a
homeomorphism ϕ : X →Y , we consider the sup of the values
| f (P)−g(ϕ(P))|; the natural pseudodistance is the inf of such
values over all possible homeomorphisms from X to Y (Fig.
1). Persistent homology provides lower bounds to this metric
[3].

Fig. 2. The inclusion maps of sublevel sets induce homomorphisms between
the respective homology modules.

III. PERSISTENT HOMOLOGY

In classical persistence [4], a topological space X is explored
through the evolution of the sublevel sets of a real-valued
continuous function f defined on X (see Fig. 2). The role of
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X is to represent the data set, while f is a descriptor of some
property which is considered relevant for the analysis. These
sublevel sets, being nested by inclusion, produce a filtration
of X . Focusing on the occurrence of important topological
events along this filtration — such as the birth and death of
connected components, tunnels and voids — it is possible to
obtain a global description of data, which can be formalized
via an algebraic structure called a persistence module [5]–[7].
Such information can be encoded in a parameterized version of
the Betti numbers, known in the literature as persistent Betti
numbers, a rank invariant and — for the 0th homology —
a size function. The key point is that these descriptors can
be represented in a very simple and concise way, by means
of multi-sets of points called persistence diagrams. Moreover,
they are stable with respect to the bottleneck and Hausdorff
distances, thus implying resistance to noise. Thanks to this
property, persistence is a viable option for analyzing data
from the topological perspective, as shown, for example, in
a number of concrete problems concerning shape comparison
and retrieval [8]–[11].

A. Multidimensional persistent homology
A common scenario in applications is to deal with multi-

parameter information. The use of vector-valued functions
enables the study of multi-parameter filtrations, whereas a
scalar-valued function only gives a one-parameter filtration.
Therefore, Frosini and Mulazzani [12], as well as Carlsson
and Zomorodian [13] proposed multidimensional persistence
to analyze richer and more complex data. Research is in fast
progress on the development and application of this new tool
[14]–[19].

A major issue in multidimensional persistence is that, when
filtrations depend on multiple parameters, it is not possible
to provide a complete and discrete representation for multidi-
mensional persistence modules analogous to that provided by
persistence diagrams for one-dimensional persistence modules.

This theoretical obstruction discouraged so far the intro-
duction of a multidimensional analogue of the persistence
diagram. One can immediately see that the lack of such an
analogue is a severe drawback for the actual application of
multidimensional persistence to the analysis of data. Therefore
a natural question we may ask ourselves is the following one:
In which other sense may we hope to construct a generalization
of a persistence diagram for the multidimensional setting?

A. Cerri and C. Landi recently proposed persistence spaces
as a generalization of persistence diagrams (see Fig. 3), prov-
ing their stability in a (weak, but still non-trivial) Hausdorff
sense [20]. The larger point is that stability (already faced
in [16]) is the most crucial property of persistence, and so
it makes sense to understand when we can preserve it in the
multi-dimensional setting.

B. G-invariant persistent homology
In several applications of pattern recognition we are required

to compare two real-valued continuous functions f ′, f ′′ defined
on a topological space X , under the assumption that f ′, f ′′
are considered equivalent to each other if a homeomorphism
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Fig. 3. (a), (b): An example of a 3D-model endowed with two different
functions; (c) a visualization of the associated persistence space. (a′), (b′),
(c′): same for a different model.

ϕ exists in a given group G of self-homeomorphisms of X ,
such that f ′′ is equal to the composition of f ′ with ϕ . As an
example, let us consider the case of a series of photos taken
by a camera rotating around an object. This corresponds to
considering the function f that associates each point v of the
circle S1 with a matrix describing the picture of the object
taken from the oriented direction defined by the unit vector
v. If there is no fixed start point for the series of pictures,
comparing the functions f ′, f ′′ obtained for two different
objects is equivalent to trying to minimize the sup-norm
distance between the functions f ′′ and f ′ o ϕ , where ϕ varies
in the group G of the rotations of S1. This approach - mainly
led by P. Frosini - produces the already mentioned natural
pseudodistance associated with the group G. Unfortunately,
this pseudometric is difficult to compute and to be used in
real applications, if the group G is not small. However, lower
bounds for this pseudodistance can be easily obtained by using
G-invariant persistent homology, an adaptation of persistent
homology that is invariant under the action of the group G
[21].

IV. REEB GRAPHS

Reeb graphs are combinatorial signatures that capture shape
properties from the perspective of a chosen function [22]. One
of the most important questions is whether Reeb graphs are
robust against function perturbations that may occur because of
noise and approximation errors in the data acquisition process.

Fig. 4. An example of two Reeb graphs Γ f and Γg associated with
simple Morse functions f ,g : S → R. The leftmost is transformed into the
rightmost one by applying a finite sequence of editing deformations (all the
admissible ones are displayed). A cost is associated with each deformation.
The editing distance between Γ f and Γg is equal to the infimum cost over all
the deformations taking Γ f to Γg.

Currently B. Di Fabio and C. Landi are tackling the prob-
lem of stability providing an editing distance between Reeb
graphs of orientable surfaces in terms of the cost necessary to
transform one graph into another by edit operations (see Fig.
4). The editing distance turns out to have all the properties of
a pseudometric [23].
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The main result is that changes in the functions, measured by
the maximum norm, imply not greater changes in this distance,
yielding the stability property under function perturbations.

Further efforts are needed to show that this editing distance
coincides with the natural pseudodistance, and hence results
to be more discriminative than the bottleneck distance of
persistent homology.

V. APPLICATIONS TO DERMATOLOGY

With the experience of a EU project of some years ago,
we have weaved a common language with dermatologists on
a terribly serious problem: the early diagnosis of melanoma
[24]. We presently profit of this experience for two research
programs - mainly manged by M. Ferri - in collaboration with
IRST (Romagna Institute for study and cure of tumors). One
program is with the University of Graz on the evolution from
naevus to melanoma. It is based both on persistent homology,
mediated by a graph representation of the lesion coming from
the watershed transform (Fig. 5).

Fig. 5. A segmentation and graph representation of a melanocytic lesion.

A second program is with an Italian industry for a system
supporting the physician with a smart retrieval of dermatolog-
ical images. This will strongly depend on the new techniques
of multidimensional persistent homology.
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